TraderAuto+

Connecting Car Buyers with Subprime Lenders

Project Overview & Desigh Document

© Copyright 2021
Licensed Under MIT License
Jia Hao Choo, Ameen Parthab, Sophie Sun, Elizabeth Li, Daniel Xu

Table of Content

You may click on each heading to navigate to that specific section.

Problem Domain Summary

Detailed Problem Statement & Solutions
Updated User Journey Map & User Process
Assumptions

Project Specifications

Tech Framework

Links to Repositories, Web App and Class Diagram
Clean Architecture

SOLID

Design Patterns

Packaging Strategy

Github Features

Testing

Frontend-Specific Information

Problems Encountered

Accessibility Report

Individual Contributions & Credits

Future Improvements (lcebox Tasks)

Go back to Table of Content

10

11

11

12

14

14

16

19

Problem Domain Summary

With the current user-journey, consumers with lower credit scores aiming to
purchase used cars struggle to both commmunicate and obtain loans from subprime
lenders. The existing gap between subprime lenders and consumers acts as an
obstacle in the formation of mutually beneficial partnerships.

Detailed Problem Statement & Solutions

Car buyers with lower credit scores often struggle obtaining loans they require to
support their purchase. They are frequently labeled as “high risk, low return” by
major banks, drastically increasing their loan application’s chance of rejection.
Fortunately, subprime lenders, such as AutoCapital Canada, work to provide
affordable yet fair loans while still offering consumers important features such as car
trade-in. However, the problem lies in that there are thousands of subprime lenders
out there, each with tens to hundreds of potential loan offers. This makes buyers feel
overwhelmed and lost which ultimately results in the disconnection between
lenders and their potential customers.

Given these consumers lack important knowledge on the loans they are likely to
receive, they also have a much harder time finding a desirable car - a car that not
only suits their needs but a car that they are financially conscious and capable of
affording. As it exists, the car-buying experience is incredibly inefficient and
unfriendly to lower credit consumers as they are only truly informed of their
purchase’s financial details much later on in the process, typically at a car
dealership’s finance office. However, the finance office will always try to upsell them
by offering unnecessary services, such as rust proofing, which prevents consumers
from acquiring the optimized deals they need. In short: car buyers with lower credit
scores need to be more informed in two ways: potential loans they are likely to
receive and, based on the loan, the cars most appropriate for their needs.

Through partnering with AutoCapital Canada, TraderAuto+ is bridging the gap
between car buyers with low credit scores and subprime lenders. TraderAuto+ solves
these existing problems by providing car buyers with more knowledge of the
different subprime loan options available to them and a range of cars that they can
afford. This revolutionary change expedites the whole car buying process -
consumers no longer need to do extensive online research about subprime loan
options available to them, as the product directly provides these different loan
options and how likely they are to get approved for each loan. Additionally, by
shopping only from a range of cars that they are more likely to receive financial
assistance for, the likelihood of restarting the whole car buying journey if their car
loans are rejected is greatly reduced.

Go back to Table of Content 3

By decreasing the amount of times typical consumers need to restart the car-buying
process, this simultaneously decreases the time dealerships spend on trying to sell
these consumers a car. TraderAuto+ disrupts this cycle of wasted time by informing
consumers of loans they can realistically be approved for so they do not end up
getting rejected after going to a dealership. This allows dealerships to more
commonly interact with consumers who have a higher likelihood of receiving the
financial support they need for their purchase and thus helps dealerships move cars
out of their lots faster.

In the subprime lenders’ perspectives, TraderAuto+ would be able to help them
demonstrate their loan options to a wider audience as consumers get exposed to
their loan options much earlier in the customer journey. This helps reduce the
existing stigma surrounding subprime lenders as being seen as “loan sharks"” or
people looking to “scam” the consumer as consumers are more financially aware of
what they can reasonably expect from subprime lenders.

TraderAuto+ is designed to create a smmooth and convenient purchasing experience
for car buyers with lower credit scores by providing them information on loan
options while recommending suitable cars, and the probability of getting approved
for the loans. This product has the potential to greatly improve customer
convenience while expanding the market share and valuation of both AutoTrader
and AutoCapital Canada.

Press Release: https://docs.google.com/document/d/1o_RSNIPj0oy91-
Sg8GDOQCCEIFIWZaYdP4yYvevWRC8A/edit?usp=sharing

Updated User Journey Map & User Process

Dealership x3

—” Research online
1 l Salesperson Test Drive

Finance
T Office

Website of dealer =~ Autotrader .
AutoCapital Canada

e — TraderAuto+

1. A consumer, likely with a low credit score, goes online to find potentially
cheap, used cars nearby. Many of these individuals will end up on AutoTrader.

Go back to Table of Content 4

https://docs.google.com/document/d/1o_RSNlPj0oy91-Sg8GDQcCElFiWZqYdP4yYvevVRC8A/edit?usp=sharing
https://docs.google.com/document/d/1o_RSNlPj0oy91-Sg8GDQcCElFiWZqYdP4yYvevVRC8A/edit?usp=sharing

These users will then press on the “TraderAuto+” tab.

A brief description of what TraderAuto+ does will be displayed. If they decide
to use this feature, they press continue and proceed.

The user will be prompted to report specific information including their credit
score, what down payment they can afford, and their monthly budget. They
have the option to become an Advanced User, which would require them to
input more financial information, but can provide a more realistic loan
calculation.

They will then be provided the opportunity to filter out the type of car they are
browsing for.

A list of cars with possible loans from AutoCapital Canada and the likelihood of
being approved for these loans will be generated.

If the user thinks that a loan result fits their requirement, they can call
AutoCapital Canada and show them the result generated. AutoCapital
Canada will then verify whether the loan can be finalised.

Finally, the customer can also book and attend a test drive. They then will be
directed to the finance office where a deal is struck, based on the finalised
loan offer with AutoCapital Canada. Given they are purchasing a used-car,
there will generally be no upselling.

Assumptions

The following assumptions are made for our project:

Note:

We have established a partnership with both AutoTrader and AutoCapital
Canada.

AutoTrader does not have an incentive to work with multiple or other
subprime lenders; there will be no conflict of interest.

Our customer base consists of only people shopping on Autotrader, hence we
are mostly targeting people looking for used cars and needing subprime
loans.

All used cars listed on AutoTrader are available at dealerships.

Senso’s API| has entries for used cars; ie. condition, kilometers driven, etc. that
allows us to provide accurate loan estimates on these cars.

We have met with AutoCapital Canada to learn how they calculate loan offers. We
made sure that our loan calculator has taken into account what AutoCapital

Go back to Table of Content 5

Canada’s official loan calculation uses, but we have simplified the calculation for our
MVP.

Loan Approval Calculation Table (based on suggestions from AutoCapital Canada):
https://drive.google.com/file/d/1gr5Rze DyxVwWNudx000ah5GJ9-
wtdez10/view?usp=sharing

Project Specifications

e Provide users a list of loans for specific cars, and the likelihood of getting
approval for each loan based on monthly income, credit score, employment
status, homeowner status, monthly budget, car price and a variety of other
factors.

o Loans options are calculated based on the user's credit score, monthly
budget, down payment using Senso Rate API

o The basic loan approval rate are calculated based on senso prepayment
score, user’s credit score, monthly budget, downpayment,

o A more advanced loan approval rate takes into account the user’s
monthly income, monthly debt as well as homeowner and
employment status

e Allow users to select car preferences so that the loans are only calculated for
the cars that they are interested in buying.

Tech Framework

Go back to Table of Content 6

https://drive.google.com/file/d/1qr5RzeDyxVwNudx000ah5GJ9-wtdez1O/view?usp=sharing
https://drive.google.com/file/d/1qr5RzeDyxVwNudx000ah5GJ9-wtdez1O/view?usp=sharing

Links to Repositories, Web

Connect via i
Connect via Java

HTTP requests Ptart
(GET/ POST) o il
~————————— Access website
Car buyers }ﬂ» Pass user inputs Get car and loan data
i Al
AWS Amplify Aerazon EC2 mazon RDS
Frontend Hosting: Backend Logic: Database
+Display service +Return cars and available loans of (MySQL):
information each car = Car data
« Take in user inputs = Calculate loan approval rate » User data
* Present external Links
Languages:
i 1 p SQL
Github Repo: Github Repo:
traderautoplus-app traderauto-plus
Languages: Language:
HTML, CSS, Javascript (React) Java
l | Developers

App and Class Diagram

Backend Repo: https://github.com/autotrader-plus/traderauto-plus

Front-end Repo: https://github.com/autotrader-plus/traderautoplus-app

Web app: https://main.d2cOmw2w964wll.amplifyapp.com/

Class Diagram:
https.//drive.google.com/file/d/TUE2gQkopkWOQVWYY3Hs8xKkpvmIwoSWIC/view?us
p=sharing

Clean Architecture

e Asseen in our packaging system, we've separated all our code into layers and
ensured that outer layer code does not depend on inner layer code. This is
further explained in our packaging section and dependency inversion section.
For example, BasicLoansCreator, which is a use case, depends on CarlList,
which is our entity, but CarList does not depend on it, or other use cases.

e Furthermore, we've implemented interfaces to act as buffers between all our
different layers. This helps to avoid high coupling between classes, and to
ensure that use cases do not depend on controllers, presenters and gateways.
For example, ConnectAutoTraderDB and ConnectSensoRateAPI are both

Go back to Table of Content 7

https://github.com/autotrader-plus/traderauto-plus
https://github.com/autotrader-plus/traderautoplus-app
https://main.d2c0mw2w964w11.amplifyapp.com/
https://drive.google.com/file/d/1UE2gQkopkWQvWYY3Hs8xKkpvmlwoSWIC/view?usp=sharing
https://drive.google.com/file/d/1UE2gQkopkWQvWYY3Hs8xKkpvmlwoSWIC/view?usp=sharing

gateways to the outer entity. To allow our use cases classes like
BasicLoansCreator and ReturnCarinformation to use outer entities like
SensoAP| or Database, we have created interfaces called
AutoTraderDBInterface and SensoAPlInterface that our gateways classes
(ConnectSensoRateAPI| & ConnectAutoTraderDB) implement. By creating
these interfaces, our use cases can depend on the interfaces, which are in the
use case layer, rather than relying on the gateways, which would violate clean
architecture.

e The data flow of our program as a whole also adheres to the clean
architecture principles. First of all, we have a controller class
ServerMainEndpointHandler that receives information from the front end, and
parses that information to be passed into our use cases,
LoanResponseConstructor through the LoanInfolnterface. Finally, the data is
then formatted through our presenter class HttpResponseConstructor and
later sent back to the front end. Essentially, the data passes through the layer
one by one without jumping through layers.

SOLID

e Single Responsibility Principle
We've ensured that every class has one (and only one) job. For example, when
rushing to finish our phase O design, we had one class that dealt with
returning every piece of information from the database which led to
unnecessarily long and disorganized methods and classes. Eventually, we split
this up into the 4 classes currently in our “database_info_manipulation”
package, such that each class only does one job, which is to either return user
information, car information, add user or authenticate user. Similarly, in our
“http_parser_constructor”, we have two classes: one of them functions as a
parser for http request and the other one functions as a http request
constructor. Even though the two classes deal with creating and parsing http
requests/responses, we decide that it would be best to make them into
separate classes, because they ultimately have different functionalities.

e Open-Closed Principle
We've segmented our code very granularly, which means whenever we finish
a small piece of code, we will never need to come back and fix it. For example,
we have a class solely dedicated to formatting the response body of our HTTP
requests. This class will not be modified, but if we needed a second way to
parse and retrieve the information it would be easy to create a second class.
Similarly, our LoanInfolnterface also demonstrates the open-closed principle
in the sense that if in the future, we need a different way of calculating loans,
we can directly create a new class that contains the new loan calculations

Go back to Table of Content 8

method and also implement the LoanInfolnterface. This way, other higher
level classes can just call the LoanInfolnterface to access different loan
calculation methods that we have. This allows us to avoid the need to go in to
edit our existing loan calculation class to accommodate different ways of loan
calculations.

e Liskov Substitution Principle
There is no need for parent and child classes in our project.

¢ Interface Segregation Principle
All classes that implement any one of our interfaces implement every method
that is defined in the interfaces. We have ensured that our interfaces contain
the minimum number of methods required for the interfaces to work. By
doing that, we ensure that all the classes that implement interfaces depend
on all the methods defined.

e Dependency Inversion Principle
We have discussed earlier how we have created interfaces between use cases
and gateways so that our use cases do not depend on higher level classes
Furthermore, we have also created an interface (LoanInfolnterface, which is
also acting as our Input Boundary) between the controller
(ServerMainEndpointHandler) and the use cases (LoanResponseConstructor),
so that both high level or low level classes depends on the interface
abstraction. This avoids high coupling between classes in different layers, and
allows changes to be made more easily in the future. We also adhere to this
principle when we need lower level classes to access high level
classes/entities, and this is elaborated in the Dependency Injection section in
Design Patterns.

Design Patterns

e Facade Design Pattern
When the server receives a POST request, there are a lot of things that need to
be done such as calling the database, pinging the Senso API for the loan
information, parsing and returning the request body. So, instead of having
multiple endpoints that do all these tasks separately, which would increase
the coupling between classes, we have decided to create a facade with our
ServerMainEndpointHandler, which delegates all these separate jobs to other
classes. This facade serves as an entry point for the clients without the clients
needing to worry about which individual classes to call.

e Factory Design Pattern

Go back to Table of Content 9

We have used the factory design pattern in our UserFactory class so that we
can abstract the creation process of User objects. This is because we have two
constructors for User class depending on the amount of information we have
from the user, so we need to use “if..else..” statements to handle the cases. By
abstracting this process using a factory, it helps to make any class that needs
to instantiate a User object much cleaner instead of writing repetitive if..else...
statements in the class.

Dependency Injection

Our LoanInfolnterface adheres to Dependency Injection, in the sense that our
use case class LoanResponseConstructor implements the interface, which
declares the method to supply the dependency. Essentially, our injector
(LoanResponseConstructor) uses the interface to supply information to our
clients. Furthermore, when the inner layer classes like BasicLoans and
LoansScoreCalculator need to access the classes or entities in the outer layer
like Senso API, we use dependency injection to achieve that. Essentially, we
provide an interface, SensoAPlInterface in the use case layer that our gateway
classes like ConnectSensoRateAPI| implements. This allows our use cases to
depend on the SensoAPlInterface (which is in the use case layer) to access the
Senso API, instead of having them depending on classes in the Interface
Adapter layer.

Strategy Design Pattern

Our project needs access to both Senso API endpoints. However, we realise
that while both endpoints require different information and depend on
different classes, they have some very similar code, especially those that
create a POST request to the endpoint. So, we have two “strategies” of doing
things, depending on what we need, but we do not have to have huge chunk
of repeating codes to avoid code smells. Hence, we have created an interface
“SensoAPlInterface” that acts as a delegate to call different strategies
(different endpoints) depending on what is needed.

Packaging Strategy

We've organized our packages by functionality. Here's how it works:

1.

2.

backend_logic contains classes that tabulate relevant loans and such, as well
as our entities classes like User and Car;

connect_api_db contains classes that retrieve information from Senso API or
our database;

database_info_manipulation contains classes that parse information from
database and turn it into data that we can use;

exceptions contains exception classes that we defined for our program;

Go back to Table of Content 10

5. http_parser_constructor contains classes that parse http requests and
construct http responses;
6. server_setup contains classes that set up CORS application and endpoints for
our server, as well as those that handle HTTP requests sent to our EC2 server;
We find that this packaging strategy works well because we can quickly identify
where each Java class is, which makes it easier for us to locate files and structure our
import statements.

Github Features

We have made use of the Projects feature in Github to create a Kanban board to
track our progress throughout the semester.We also used the pull requests and
issues on Github to flag any issues that need to be fixed and allow peer reviews
before it is merged to the main branch. We have restricted merging so that we need
at least 2 peer reviews for each pull request, otherwise the pull request cannot be
merged.

We have used predefined templates “.gitmessage” and “pull_request_template.md”
for our commits and pull requests. Every time someone needs to make a commit or
pull request, the respective template will automatically show up and we just need to
fill out the appropriate information relating to the individual commits/pull requests.

We have also finalized our README.md that clearly commmunicates what the project
is about, how to run the program, and other basic information about our program.
Lastly, we have used Github Actions to automatically build Gradle projects that are
triggered by all pull requests. We also integrated “CodeFactor” into our Github that
will do a basic code review like checking code style, code repetition, etc. As the
integration will not be able to catch all errors, we only use it as our “sanity check tool”
once we have manually reviewed all our codes.

Testing

We have a test class for every class, including exceptions classes and classes that
configure spring boot server. Furthermore, we have achieved 100% classes and
methods coverage from our test cases. The test class for exceptions class tests
whether the exception can be thrown and whether the correct error message that
we defined will return once the specified methods are called. For the test cases for
classes that set up the spring boot server, they test whether the server can be
started and work. While we have test classes for those that configure spring boot
servers or set up endpoints, we have also manually tested our code and server on
localhost every time before we merge a pull request.

Go back to Table of Content 11

We have also used Mockito to support unit testing for classes that directly access the
database (those in the database_info_manipulation packages). Mockito allows us to
mock the connection with the database, so we can do actual unit testing that makes
sure that we are returning information in the correct format without actually
connecting to the database.

Frontend-Specific Information

¢ Naming Convention
o Forthe naming convention for our JavaScript code, we have followed
the guideline stated in this webpage, and we have decided to keep it
similar to our back end code.
m For our function names, we have camelCase;
s For our component, class and file names, we have use
PascalCase.

e Single Responsibility Principle

o Aseach function is only responsible for rendering one (and only one)
specified section of a webpage, this demonstrates the single
responsibility principle. Each js file is only responsible for one page of a
website and only contains behaviour functions such as handleClick, and
handleChange, etc for elements of that page.

o CSS style sheets are also separate for each specified component and
webpage, for clarity, easier management and edits later on.

e Inheritance/Composition

o Forinheritance, React does not have inheritance, instead it has
composition. We tried applying it in such a way as dividing the
rendering of a webpage into multiple parts, multiple functions and
calling the smaller one inside the larger one inside the actual class
responsible for that page. Like how Car js is responsible for rendering
the browse page and it calls CarFilter and Caritem functions for specific
elements/components. Cars class and Signup class are both called in
Userlnputs class so the inputs can be collected in one (sorta) parent
class as state variables to make the post request to the back end with
needed inputs information.

e Packaging
o We packaged our front-end code by layers. We identified three primary
packages.
m Firstly, we have all incoming information under the “client info”
as this is the package that receives information from the client.

Go back to Table of Content 12

https://javascript.plainenglish.io/the-ultimate-guide-to-javascript-naming-conventions-f3e371efb0d1

m We then had a package to parse and display this information
under web-design. This class was split up into numerous
components that each contained one specific part of the
webpage.

m Finally, we had a client input page that recorded and sent client
input to our backend.

= We have decided to put the test files together in a folder called
“test” within individual packages instead of separating all the test
files out into another folder.

e Design Patterns

o Given most of our main code was in our backend, our frontend
primarily dealt with receiving and displaying information. Hence we
personally did not feel the need to implement any design patterns
outside of what already exists when using React, HTML and CSS.

o For example, React itself organizes functions using the Chain of
Responsibility design pattern and we've also implemented the State
Design Pattern to output information in a clean manner when
switching between car options.

e Testing

o Firstly, we tested rendering, just to ensure that everything renders
correctly regardless of the information that was sent in from the client
or the inputs the user makes.

o Secondly, we tested functionality. This can be split up into two parts for
each package we had on our front end.

m Firstly we tested whether or not the information we received
from our backend was consistent and worked with the code we
had.

m Then we tested whether or not the different aspects of our web
design functioned correctly ie. whether or not dropdowns
worked and if links sent to the correct page.

o We have omitted the testing class for Button.js since that class because
it is only used for rendering button objects with specified look
associated with Button.css. We have manually tested the style of the
buttons, hence the functionality of the class, by running the website.

o We have also omitted the testing class for Signup.js, because it is a
helper class that combines Signup_Stepl, Signup_Step2, and
Signup_Step3 together. By testing Signup_Stepl, Signup_Step2, and
Signup_Step3 as well as Userlnputs individually, we have made sure
that the entire sign up process works. We have also manually tested
the sign up process on the local host.

Go back to Table of Content 13

Problems Encountered

e A bigissue we struggled with at the beginning of the project was connecting
every different layer to one another. We had to use external APIs such as JIDBC
and edit gradle/POM files which none of us had any experience using/doing
previously. We also didn't have a very good understanding of the interface
segregation principle which led to terrible architecture that took a very long
time to eventually fix.

e Another big issue that we faced as a group was figuring out what Amazon
EC2 is, and how we can build a server on it. It took us a long time to figure out
how to set up an EC2 server, how security groups on AWS works, and how we
can keep our java server running all the time on the EC2 instance. We
eventually figured everything out, and the process of deploying to EC2 and
accessing EC2 becomes easier.

e One smaller issue was the trouble we had with environment variables. Since
some people use macOS, while others use Windows and Linux, it was hard for
all of us to properly set up the env variables. As you will read in the Individual
Contributions & Credit section, some of us had trouble testing our code that
requires the database due to issues with not having the environment
variables properly set up. This caused a lot of frustration and it took us a very
long time to realize that there wasn't an error with our code, but rather
accessing the database.

Accessibility Report

For our MVP, we have implemented several features in our web app that align with
some of the universal design principles:
e |Low Physical Effort

o We have implemented drop down menus so that users can simply pick
from existing options instead of having to type their options.

o Using our website is pretty intuitive, and the form does not take too
long to complete, so it will not be too physically demanding for the
users. We've also allowed users to choose whether or not they'd like to
input more detailed information depending on whether or not they
have the time to do so.

e Perceptible Information
o The text and font size of our website are of sufficient size so that
everything is perceptible. Also, most of our web pages use white on
dark color backgrounds, which provides a nice contrast for everything
to be easily readable.

Go back to Table of Content 14

To improve our web apps accessibility to align more with the universal design
principles, we would include:
e Equitable Use

o

We will implement text-to-speech features for our website to
accommodate people with reading needs.

When the user first lands on the site, we plan to include a demo video
to walk the user through the features available on our web app so that
every user, regardless of their technical abilities, can still use our
website with ease.

e Flexibility in Use

@)

We plan to implement a “Help” option in the navigation to provide
more information of the inputs of the form and the step-by-step
process of how to use our web app.

We also plan to make our web app more responsive across devices of
different sizes, so people can have more choices with how they access
our application.

e Simple and Intuitive Use

o

We plan to include optional popup windows to detail definitions of
each user input to ensure the user understands what information they
need to provide.

Given our webpage is directly on a used-car selling website, it's very
easy to locate and head to.

We plan to include more detailed error messages when user input or
actions are invalid.

e Perceptible Information

@)

Overall, | think we have done everything pretty well to make sure that
most of our information is perceptible. However, in the future, we plan
to improve our HTML code to make sure that it fully implements and
supports ARIA features, so that the web content can be made more
accessible and perceptible in screen readers and text-to-speech
applications.

e Tolerance for Error

o

@)

Go back to Table of Content

We have implemented fail safe features for when the user inputs
incorrect values, such as when users accidentally input a letter in
responses that require only numerical values, the form will
automatically delete/ignore the letter.

The next steps would be to create limits for how much a user can input
for certain fields and add this capability to postal codes.

15

e Low Physical Effort
o Overall, | think that our web app does not require a huge amount of
physical effort. However, we could implement sliding scales for inputs
that take in numeral values, so users do not need to physically type and
they can just use the sliding scale to input values.

e Size and Space for Approach and Use
o Right now, our web app is only responsive on certain devices. So, in the
future, we would want to make sure that our web app is responsive
across all devices, so that people who are using any kind of device can
access our application with ease regardless of their posture and
mobility.

Our program would be marketed towards car buyers with suboptimal credit
scores. TraderAuto+ is intended to be used by car buyers who have lower credit
scores as its purpose is to calculate possible loans along with their likelihood of
approval for the user in order to help them gain a better understanding of their
financial status in the context of purchasing a car.

As TraderAuto+ is a web application and we currently don’t have any features
that help the visually impaired interact with our application, it's less likely this
demographic of people would use our web app. As we have a lack of customization
options regarding the visual components of our website, such as background colour
and text size, TraderAuto+ may also be less used among people who have dyslexia.
Additionally, as our website presents all information in English, those who don't
understand English would be less likely to use our product.

Individual Contributions & Credits

Sophie Sun:

e My contribution is focused on the frontend. | set up the website and
connected it to AWS Amplify and coded in Javascript and CSS along with
using framework React to create the web application. | set up functions that
send https requests to the end point of our web server and save + parse the
response to be displayed on the website.

e Two significant pull-requests:

o https://github.com/autotrader-plus/traderautoplus-app/pull/13
This pull request is writing Loan.js which displays the car details page
when users clicks on any filtered car image on the browse page. |
learned how to do this by using the React Router library and passing
responses received in different fetch requests as component props in

Go back to Table of Content 16

https://github.com/autotrader-plus/traderautoplus-app/pull/13

Route components. This eliminates the idea of hard coding every single
car detail page for every car in our database.
https://github.com/autotrader-plus/traderautoplus-app/pull/21

This pull request is made during the final stage of the project where |
fixed bugs detected by Elizabeth who was doing front end testing for
my codes and cleaned up, restructured and also documented my
codes.

*When before | was working alone on frontend | did not use Github
properly and saved all of my progress in one master branch, which is
completely wrong and messy. That branch is now deleted and as a
team we now work collaboratively on it and we maintain a much more
organized Git repo, properly using different branches to work on
different parts of the code and writing meaningful commit messages +
pull request comments. But also as a result, my major commits and
pulls on the development of the website before are not saved.

Ameen Parthab:

e | had two main contributions. Firstly, | set up the connection to the database
and made most of the code to connect to it to retrieve and send data.
Secondly, | worked on the frontend to package and clean up code along with
improving the website design.

e Two significant pull-requests:

o

Daniel Xu:

https://github.com/autotrader-plus/traderauto-plus/pull/9. This pull-
request is the construction of the package that manipulates the data
retrieved from the database. It deploys clean architecture, was
thoroughly tested (primarily by Elizabeth), and efficiently connected to
the database, which was one of the first steps we needed to do for this
project. I'm also proud of the detail that went into each commit
message.
https://github.com/autotrader-plus/traderautoplus-app/pull/11. As |
began transitioning to the frontend, my PRs became more granular,
but I'm proud of this PR because | went all out, learning HTML and CSS
over reading week to begin working on the frontend. Furthermore, the
PR also required hours of studying existing code which allowed me to
build on it, repackage it, and implement clean architecture overall.

e |'ve been working on the backend business logic, writing tests, and handling
the responses from Database, LoanTableCalculator, and SensoScore/Rate

APls.

e Two significant pull requests that I've made for this project are:

o

https://github.com/autotrader-plus/traderauto-plus/pull/10. This pull-
request is when | finished the skeleton version of our backend business
logic. It builds the foundation for clean architecture and SOLID for

Go back to Table of Content 17

https://github.com/autotrader-plus/traderautoplus-app/pull/21
https://github.com/autotrader-plus/traderauto-plus/pull/9
https://github.com/autotrader-plus/traderautoplus-app/pull/11
https://github.com/autotrader-plus/traderauto-plus/pull/10

future updates, and provides our group with an idea of how our phase 2
backend code is going to be. The test file contained the necessary code
for the completion of the individual backend tests (UserTest, CarTest,
LoanTest, etc) in the future PRs. This PR is also when we first received a
return info that incorporates both the database and SensoAPI.
https://github.com/autotrader-plus/traderauto-plus/pull/73. Although
JiaHao was the one who made this pull-request, this was mainly due to
an issue | had with environment variables so | couldn’t test my code
locally. Hence, | had JiaHao test and make the PR incorporating his
packaging changes and my basic version of the backend code for
phase 2 submission. In this PR, the new backend code processes the
return info from the 2 Senso APIs and retrieves the first month
installment and SensoScore, and incorporates the 2 with the LoanTable
into a final score, which is the loan approval likelihood score with
multiple loans. The final score is essentially the packaged version of the
info that we will ultimately be displaying in the frontend website, and
this PR is the proof of concept for the backend logic for phase 2 (final)
submission.

Jia Hao Choo:

e | have

been working on setting up new endpoints for our web server, as well

as setting up Github Action for our project. Also, | have been doing refactoring
and testing for backend and frontend code.
e Two significant pull requests that | have made throughout the term are:

o

Elizabeth Li:

https://github.com/autotrader-plus/traderauto-plus/pull/12, where | set
up the HTTP server and connect the front end with the backend. | think
that this is a significant contribution, because making sure that
everything is connected provides a foundation for the team to build
new features and make sure that we are able to work with a properly
functioning web application.
https://github.com/autotrader-plus/traderauto-plus/pull/73, where | did
major refactoring and test updates across our backend code. | made
sure that all test cases cover 100% of the methods and classes, which is
very important to ensure that each part of our program can work
without errors. | also did some refactoring for this PR to make sure to
reduce code smell and make our code more easily understandable.

e [|'ve been working on testing the backend and frontend code, user
authentication, as well as creating the loan table calculator
e Two significant pull requests:

o

https://github.com/autotrader-plus/traderauto-plus/pull/72, where |
created the loan approval calculator which calculated a user’s loan
approval score using their credit score, PTI, DTI, employment and

Go back to Table of Content 18

https://github.com/autotrader-plus/traderauto-plus/pull/73
https://github.com/autotrader-plus/traderauto-plus/pull/12
https://github.com/autotrader-plus/traderauto-plus/pull/73
https://github.com/autotrader-plus/traderauto-plus/pull/72

homeowner status, and SensoScore as well as the testing. This score is
important in helping generate appropriate loans for the user which
directly serves the main output of our web app.

o https:/github.com/autotrader-plus/traderauto-plus/pull/60, where |
worked with Jia Hao to refactor most of the code in the backend
making sure the code was properly documented, naming conventions
were respected, and removing the use of static variables and methods
where we didn't need them. This was significant because it helped
clean up our code to make it easier for members of the team to
understand the code and keep our code consistent.

Credit to the following organizations for providing us with guidance and tools for our
project:

Senso.Al for providing their Senso API to calculate loans and prepayment
score.

AutoCapital Canada for providing us guidance on some important factors to
take into account when calculating loan approval rates.

Future Improvements (lcebox Tasks)

Right now, we are passing user information (ie. username and password)
directly into the server backend. This is not secure, and it might be worth
looking into encryption or OAuth.

Right now, when users sign in they are brought straight to the car filter page.
However, for our MVP, we have not set up a way to retrieve existing user
information to the front-end, after they fill out their information, they are
automatically brought to the Browse Cars page if the authentication is
successful. So, in the future, we will need to find some ways to get user
information from our database.

We may adjust our loan calculation so more weight is put on credit score and
monthly budget.

We may need to deal with the case where the user has no monthly income
but is in debt, because right now, if the user doesn't input their monthly
income, they are considered “Basic User”, so we will not take into account any
extra information. This is not reflective of the real world, because a user can
have no monthly income but be in debt, which may affect their loan approval
result.

We may consider making our domain, though it might not be necessary if we
are just a web app plug in to dealership websites.

Make our website responsive to improve accessibility on a range of devices.
Provide opportunities through embedded links to directly connect with
AutoCapital Canada to move forward with the purchase journey.

Go back to Table of Content 19

https://github.com/autotrader-plus/traderauto-plus/pull/60

Go back to Table of Content

20

	Problem Domain Summary
	Detailed Problem Statement & Solutions
	Updated User Journey Map & User Process
	Assumptions
	Project Specifications
	Tech Framework
	Links to Repositories, Web App and Class Diagram
	Clean Architecture
	SOLID
	Design Patterns
	Packaging Strategy
	Github Features
	Testing
	Frontend-Specific Information
	Problems Encountered
	Accessibility Report
	Individual Contributions & Credits
	Future Improvements (Icebox Tasks)

